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1Note that the term “credible interval” may be more appropriate than “confidence interval” given that the range is
based on subjective as well as statistical considerations.  Brattin, Barry, and Chiu (1996) provide additional examples of
uncertain PDFs that illustrate this concept.
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APPENDIX D

ADVANCED MODELING APPROACHES FOR 
CHARACTERIZING VARIABILITY AND UNCERTAINTY

D.0 INTRODUCTION

This appendix briefly describes the following advanced modeling approaches that can be used in
probabilistic risk assessment (PRA) to characterize variability and uncertainty: two-dimensional MCA
(2-D MCA), microexposure event analysis (MEE), geospatial statistics, and Bayesian analysis.  Except
for 2-D MCA, these approaches can also be applied to point estimate risk assessment.  The application of
many of these approaches will require access to expertise in specialized areas of statistics and, in some
cases, specialized or even custom-designed computer software.  The intent here is to introduce some of
the basic concepts and terminology, as well as to provide references where the reader can find more
exhaustive coverage of these topics. 

D.1.0 EXPRESSING VARIABILITY AND UNCERTAINTY SIMULTANEOUSLY

A Monte Carlo analysis that characterizes either uncertainty or variability in each input variable
(see Chapter 1) can be described as a one-dimensional Monte Carlo analysis (1-D MCA).  A 2-D MCA is
a term used to describe a model that simulates both uncertainty and variability in one or more input
variables.  All probability distributions that are used to describe variability in a PRA model have a certain
degree of associated uncertainty.  For example, suppose variability in soil concentration (ppm) is
estimated using a normal probability density function (PDF) defined by a mean (µsoil=5) and standard
deviation (σsoil=1), and subjectively truncated (min, max) at (0, 50).  Uncertainty in the parameter
estimates can be represented in a PRA model by assuming both parameters are also random variables. 
To illustrate this concept, assume normal PDFs for uncertainty can be specified for both parameters. 
Uncertainty in the mean is described by the normal PDF with parameters (µmean=5, σmean=0.5); similarly,
uncertainty in the standard deviation is described by the normal PDF with parameters (µSD =1, σSD =0.5). 
Model variables are represented in this manner when there is a compelling reason to believe that a unique
probability distribution does not adequately describe one’s knowledge of each variable in the model.  A
variable described in this way is called a second order random variable.  Figure D-1 (Panel A) shows a
collection of n=20 cumulative probability distributions (CDFs), each curve representing a unique set of
(mean, SD) parameter estimates for the normal PDF for variability.  Panel B shows the 90% confidence
interval1 based on 2,500 simulated CDFs.  The 95% lower and upper bounds correspond to the
distribution of 5th percentiles and 95th percentiles, respectively (i.e., CDF for 2,500 5th percentiles and
CDF for 2,500 95th percentiles).  The 90% credible interval (CI) for the 50th percentile is (3.4, 6.7).
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Figure D-1.  Panel A shows a family of 20 CDFs for a hypothetical random variable, Y (e.g., concentration in
units of ppm), characterized by a normal PDF where both the mean and SD are also random variables
representing uncertainty in the parameter estimates: Mean~ Normal(5, 0.5), SD~ Normal(1, 0.5).  Each CDF
represents a single simulation of n=2500 iterations using a unique set of parameters.  For example, CDF1

represents N~(4.0, 1.3) while CDF2 represents N~(5.4, 0.3).  Panel B shows the “90% credible interval” for the
CDF based on 2,500 simulations, each simulation using n = 2500 iterations (i.e., a 2-D MCA with 2,500 outer
loop iterations and 2,500 inner loop iterations).  Lower, median, and upper bounds represent the simulated 5th,
50th, and 95th percentiles, respectively.  The 90% confidence interval for the estimate of the 50th percentile is:
{3.4, 6.7}.
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EXHIBIT D-1

DEFINITIONS FOR APPENDIX D

Bayesian Statistics - A specialized branch of statistics that views the probability of an event occurring as the degree of belief
or confidence in that occurrence.

Geospatial Statistics - A specialized branch of statistics that explicitly takes into account the georeferenced context of data and
the information (i.e., attributes) it contains.

Frequentist - A term referring to classical statistics in which the probability of an event occurring is defined as the frequency
of occurrence measured in an observed series of repeated trials.

Image Analysis - A technique in geostatistics used to restore a degraded image or interpret images that have been contaminated
by noise or possibly some nonlinear transformation.

Kriging - A geostatistical method of spatial statistics for predicting values at unobserved locations.
Likelihood Function - A Bayesian term referring to a probability distribution expressing the probability of observing a piece

of new information given that a particular prior belief is true.
Location Tag - The spatial coordinates of a sampling location (e.g., longitude, latitude).
Microexposure Event Analysis (MEE) - An approach to modeling exposure in which long-term exposure of an individual is

simulated as the sum of separate short-term exposure events.
Point Pattern Analysis - A technique in geostatistics of restricting the analysis to location information, ignoring attribute

information, addresses two location problems: (1) describing points according to spacing, and (2) describing points
according to density.

Posterior Distribution - A Bayesian term referring to a probability distribution that has been updated with new information.
Prior Distribution - A Bayesian term referring to the hypothesized, expected, or calculated probability distribution for an event

prior to the collection of new information.
Spatial Autocorrelation - The tendency of data from locations that are relatively close together to be geographically correlated.
Thiessen (Voronoi) Polygon Analysis - A method of spatial statistics in which an area is subdivided into subregions, or

polygons, in order to predict values at unobserved locations. 
Time Step - A modeling term used to describe the time interval within which variable values do not change.
Two-Dimensional Monte Carlo analysis (2-D MCA) - Separate representation of variability and uncertainty in an MCA, usually

accomplished using nested computation loops.

In the example shown in Figure D-1, the mean and standard deviation for soil concentration were allowed
to vary independently.  Thus, a distribution could be defined by a combination of a low mean and a high
standard deviation, high mean and low standard deviation, or any other combination in between.  The
assumption of independence of variable parameters may not be valid in all cases.  It may be unreasonable
to assume that a high mean soil concentration would occur with a low standard deviation.  An alternative
assumption would be that the standard deviation of the mean is a constant proportion of the mean (i.e., a
constant coefficient of variation).  Correlations between parameters should be considered in the design of
the PRA.  One approach that is especially useful for characterizing relationships between the slope and
intercept of a simple linear regression is to specify the bivariate normal distribution for the parameter
estimates. 

D.2.0 TWO-DIMENSIONAL MONTE CARLO ANALYSIS (2-D MCA)

Two-dimensional MCA is an approach for computing risk (or hazard) when combining
distributions that represent variability and uncertainty.  In 2-D MCA, distributions representing
variability and uncertainty are sampled using nested computational loops (Figure D-2).  The inner loop
simulates variability by repeatedly sampling values for each variable from their defined probability
distributions.  With each circuit of the outer loop, new parameter values for each variable are selected,
and the inner loop sampling is repeated.  The result is a collection of inner loop simulations, one for each
parameter value selected.  If the inner loop samples 5,000 times, and the outer loop samples 1,000 times, 
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 Simulation Logic for 2-Dimensional MCA

Figure D-2.  Diagram showing of a 2-D Monte Carlo model in which the variability and
uncertainty dimensions are computed in nested loops.  In this example, values for
exposure variables in the inner loop represent monthly averages.

then each variable is sampled 5,000,000 times and 1,000 simulated probability distributions of risk are
generated from the PRA model.  These probability distributions can be analyzed to estimate the
distributions for specific risk estimates.  For example, confidence limits on the estimate of specific risk
percentiles can be simulated using 2-D MCA (Figure D-3).
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Figure D-3.  Output from a 2-D MCA showing the estimated mean Hazard Quotient (HQ) and the
90% confidence interval for the arithmetic mean (AM) and selected percentiles of the HQ distribution.  The 95th

%ile HQ would be the reasonable maximum exposure (RME) risk estimate.  The simulation suggests that there is
a 95% probability that the RME HQ (95th percentile) is below 16.
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Standard Time-Averaging

Microexposure Event Modeling

C = Concentration; I = exposure event; j = year of life
IR = Intake Rate
EF = Exposure Frequency
ED = Exposure Duration
BW = Body Weight
AT = Averaging Time

D.3.0 MICROEXPOSURE EVENT ANALYSIS

The standard dose equation
generally used in Superfund site risk
assessments represents exposures
averaged over a specified time period
that is relevant to the health endpoint of
concern (Equation D-1).  If the risk
assessment is directed at assessing life-
time risk to humans, the averaging time
used in Equation D-1 would generally be
70 years (i.e., estimated average human
lifetime), and the calculated chemical
intake would generally represent the life-
time average daily dose (LADD).  Where
information is available to characterize
variability on a smaller time scale than
life-time, an alternative expression of
dose that accommodates such variability
may be desirable. 

Concentrations in various
environmental media can be expected to
vary over time.  For example, wind
erosion may change chemical
concentrations in surface soil.  Leaching may change concentrations in both subsurface soil and
groundwater.  The change in the concentration term is most readily apparent when considering anglers
harvesting fish.  If an angler consumes a large amount of fish from a single location (e.g., a specific lake,
pond, or river), then the average chemical concentration in the fish consumed by that angler can be
expected to be similar to the average of the chemical concentration of fish in the population.  However, if
an angler consumes fish only occasionally, or harvests fish from different locations, there will be
considerably more uncertainty in the concentration term.  In addition, a harvesting angler may consume
varying amounts of fish over the period of the exposure duration due to changing tastes, changes in the
fish population size or other factors.

Daily activity patterns, food intake, soil ingestion and other behavioral factors are measured in a
time period of less than a year.  The extrapolation of these short term results to the chronic exposure
situation is a source of uncertainty.  Exposure events are real but unknowable, whereas data regarding the
nature and magnitude of these events is known but its application to a real world situation is uncertain. 
Microexposure event analysis (MEE) attempts to explicitly quantify this uncertainty.  Figure D-5
presents the general approach for MEE analysis. (Price et al., 1996, 2000).  MEE modeling provides an
alternative to the standard time-averaging approach represented by Equation D-1.  In the MEE approach,
long term intake is viewed as the sum of individual exposure events (Equation D-2).  Implementing the
MEE approach in a PRA requires dividing the exposure duration into short epochs, or time steps, within
which the values assigned to exposure variables remain constant, but are allowed to vary from one time
step to the next.  In a PRA model, exposure variables are adjusted at each time step by selecting values
from the probability distributions representing each variable (Figure D-4).  Discussion of the
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Figure D-4.  Time Step for MEE.

implementation of MEE analysis in risk assessment and its merits and limits can be found in Wallace et
al. (1994), Price et al. (1996), Slob (1996), and Buck et al. (1997).

In MEE modeling, the
time step becomes an important
variable, with associated
uncertainty.  The time step should
be selected based on information
available to describe how
exposures change over time.  For
example, a model of a moving
plume of solvents in groundwater
might suggest that chemical
concentrations in a given location
are dropping by between 16 and 
25% quarterly.  Several rounds of
sampling may support this
prediction.  This rapid decline in
concentrations suggests that an
appropriate time step might be
one quarter (i.e., three months).

On the other hand, where
risk is being assessed for metals,
dioxin, or PAHs in soil, the concentrations might be expected to change much more slowly, if at all, and
the basis of the time step might be the increase in age and corresponding changes in behavior of the
receptor.  The time step may be global; that is, one time step may apply to all variables in the model.  In
this case, the same number of random values would be selected for each exposure variable in a Monte
Carlo simulation.  A more complex model may use different time steps for different variables, requiring
some probability distributions to be sampled more often than others.  The selection of a value for a time
step implies that the value represents the average value for that variable during the time step.
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Figure D-5.  Flowchart showing general approach for Microexposure Event (MEE) analysis.
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Figure D-6.  Hypothetical example showing the effect of model time step on the probability
distribution for soil and dust ingestion rate in children over a 1-year period.  Number of
samples (n) needed to simulate exposures:  Annual (1), Quarterly (4), Monthly (12).

Two important issues related to time step should be considered in implementing the MEE
approach in PRA models.  The first is the relationship between the length of the time step and the number
of times random values are generated from a defined probability distribution.  As the time step decreases,
more time steps are needed to simulate exposures over a specified duration.  For example, given a time
step of one year and an exposure duration of 30 years, each random variable will be sampled 30 times
(once per year); for a time step of one month and an exposure duration of 30 years, each random variable
would be sampled 360 times (i.e., 12 months/year x 30 years).  The Central Limit Theorem indicates that
as n increases, the distribution of sample means is approximately normal, and the standard deviation of
the sample distribution is inversely proportional to the square root of n.  Thus a highly skewed input
distribution (e.g., lognormal) may tend to become less skewed with increasing n (Figure D-6).  A biased
estimate of the RME risk in a PRA model may result if an inappropriately small or large time step is used
in the model.  This emphasizes the importance of having an empirical basis for selecting the time step
and of exploring the time step as a variable in a sensitivity analysis of the model.

The second issue related to the time step concerns temporal correlations.  Is it reasonable to
assume that random values selected for consecutive time steps are completely independent?  For
example, consider body weight.  The body weights of an individual measured at different times would be
expected to show positive temporal autocorrelation; that is, body weight is likely to be similar (but not
constant) from one time step to the next.  For example, if an individual weighs 60 kg during one month, it
is unlikely that they will weigh 80 kg the next month.  If this scenario is accepted, then body weight
should not be allowed to vary independently from one monthly time step to the next in the model.  At
shorter time steps, temporal correlation becomes more likely as a result of temporal autocorrelation.  For
example, one can expect a higher correlation between body weights on an individual measured on two
successive days (one-day time step) than between weights measured at the midpoint of two successive
years.  Approaches to simulating temporal correlations in probabilistic models might include fixing an
individual within a percentile range of a distribution (e.g., randomly assigned quartile) or using randomly
assigned fluctuations (e.g., BWt = BWt-1 ± x).
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EXHIBIT D-2

POSITIVE SPATIAL AUTOCORRELATION

• Locations with a high value of Y tend to be
surrounded by nearby high values of Y.

• Locations with a medium value of Y tend to be
surrounded by nearby medium values of Y.

• Locations with a low value of Y tend to be
surrounded by nearby low values of Y.

EXHIBIT D-3

EXAMPLES OF RISK ASSESSMENT ISSUES 
LINKED TO GEOSPATIAL STATISTICS

• Sampling tends to disproportionately represent
“hot spots” (i.e., a relatively large portion of a
data set with a small sample size (n) tends to be
concentrated at “hot spots”).

• The upper confidence limit (UCL) for the
arithmetic mean exposure concentration (e.g.,
chemical concentrations in soil) depends on the
sample size.

• Additional sampling may be needed, especially
to better define the spatial patterns or the extent
of contamination.

• There is uncertainty about locations not sampled
at a site, as well as uncertainty regarding the
representativeness of neighboring samples in
nearby EUs. 

D.4.0 GEOSPATIAL STATISTICS

Spatial statistics is a specialized branch
of statistics, falling under the heading of
multivariate statistics, that explicitly takes into
account the georeferenced or locational tagged
context of data.  Generally, environmental
samples collected at Superfund sites have this
geolocational information  By acknowledging
the geography of site chemicals, information
about the spatial distribution of contamination
can be incorporated into an exposure assessment. 
In addition, knowledge about a receptors home
range or patterns of movement may also be
incorporated into the definition of the exposure unit (see Appendix C, Section C.2.0).  Explicitly
accounting for spatial relationships may lead to a more accurate estimate of the confidence limits for the
arithmetic mean concentration.  Geospatial statistics quantifies the spatial autocorrelation (Exhibit D-2)
of sample measurements and allows for the exploration of the spatial distribution of exposure and risk
using techniques of map generalization.  By recording locational tags for each sample, information about
spatial patterns within an exposure unit (EU) can be exploited to estimate both pre- and post-remediation
exposure and risk.  

In the past five years, with rapidly expanding software and hardware capabilities, some examples
of the application of geostatistics can be found in exposure assessment and remedial design (e.g.,
Gomez-Hernandez, 1996; Goovaerts, 1996, 1997; Kriakidis, 1996; Ginevan and Splitstone, 1997;
McKenna, 1998; Hope, 2000; 2001) as well as
site assessment guidance (e.g., U.S. EPA, 2000).

Several important risk assessment issues
are closely linked to geospatial statistics, as
described in Exhibit D-3.  Geospatial statistics
comprises:

• spatial autoregression
• geostatistics
• point pattern analysis
• image analysis

The first three of these subjects can
contribute to spatial statistical support of site risk
assessments.  The key concept linking all three is
spatial autocorrelation, which refers to
covariation among samples for a single chemical,
or the tendency of data from locations that are
relatively close together to be geographically
correlated.  By analogy, classical statistics treats
soil samples as though they are balls, each having
a battery of attributes, that can be placed into an
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urn for statistical analysis; geospatial statistics treats soil samples as though they are clusters of grapes,
with the branchy stems representing locational tags.  Concentrations located on the same “branch” will
be more strongly correlated than concentrations on different branches.

How is Geostatistics Different from Classical Statistics?

In general, geostatistics provides information beyond that provided by classical statistical
techniques for at least two reasons.  First, in classical statistics, observations are assumed to be
independent.  This assumption is often invalid at contaminated sites where the method by which a
chemical is released into the environment (e.g., deposition form airborne emissions; migration of
contaminant plume from a point source) often results in positive spatial autocorrelation (see
Section D.4.1).  In other words, observations located next to each other tend to contain similar levels of
contamination (i.e., redundant information).  For example, the higher the spatial autocorrelation, the less
incremental information is provided by adding observations in close proximity to existing observations. 
This issue is compounded when the sample locations have been preferentially determined (e.g., “hot
spot” sampling) rather than distributed at regular intervals or specified using random sampling
methodology.

 Second, geostatistics is able to use the geospatial information contained in the data to model
uncertainty in contaminant concentrations for areas where data are scarce, a situation commonly
encountered in site assessment work.  Using geostatistics, information from samples collected from
outside an EU can be used to model the uncertainty in the mean concentration within an EU.  Approaches
that do not consider the geospatial information present in the data are limited to the subset of samples
within an EU. 

D.4.1 CORRELATION AND SPATIAL AUTOCORRELATION

Several simple bivariate statistical approaches may be used to introduce the concept of spatial
autocorrelation.  Consider two variables, X and Y.  For positive correlation there is a tendency for high
values of X to be paired with the high values of Y, medium values of X to be with the medium values of
Y, and low values of X with the low values of Y.  The tendency is in the opposite direction for negative
correlation; high values of X tend to be paired with low values of Y, and so on.  Spatial autocorrelation,
which virtually always is positive, directly parallels these definitions, but is written in terms of a single
variable as shown in Exhibit D-2.

Just as the bivariate relationship between two variables, X and Y, can be portrayed by a scatter
plot (Y versus X), the spatial autocorrelation relationship can be portrayed for a single variable, Y, (e.g.,
Y versus Y).  A good example is the Moran scatterplot, which plots the sum or average of nearby values
of Y versus Y.  This plot is most effective when Y has been converted to z-scores.  As shown in
Figure D-7 and Section D.4.2, scatter plots can be used to illustrate some important issues related to
sample size.  



RAGS Volume 3 Part A ~ Process For Conducting Probabilistic Risk Assessment
Appendix D ~ December 31, 2001

Page D-12 

0

5

10

0 5 10
X

Y

outlier (n = 1)

cluster (n = 99)

Figure D-7.  Effect of an outlier on measured correlation:  r=0.956
with outlier (n=100), whereas r=0.086 excluding outlier (n=99
clustered points).

If no soil samples were collected at a site (n=0), there is no information about the chemical
concentrations in soil, and any guess may be considered an estimate.  However, if the chemical
concentration of a single sample (n=1) is measured, some information is obtained that partly restricts this
estimate.  As each additional independent sample is taken, more information is obtained, and the
restriction on the estimate becomes more binding.  If the same location is selected repeatedly for
sampling, then the repeated measures, which may vary through time, will tend to be highly positively
correlated; part of the information obtained from each sample is the same, and should not be counted
more than once in estimating the site-wide soil concentration.  Similarly, if immediately adjacent
locations are sampled, the measures will often tend to be highly positively correlated (spatial
autocorrelation).  Once the first sample is taken, each additional sample provides only a fractional
increment of new information about the site in its entirety.  

D.4.2 EFFECTIVE SAMPLE SIZE (N*) AND DEGREES OF FREEDOM

Repeated measures can result in data clustering, which can be illustrated in a scatter diagram. 
Because two points determine a straight line, if (n–1) points cluster together on a scatter diagram while a
single additional point occurs far away from this cluster (i.e., an outlier), then the resulting bivariate
correlation will be very high (see Figure D-7).  This situation alludes to the notion of effective sample
size (n*): the n* is no longer equal to the number of observations (n), but rather is dramatically reduced
by the presence of inter-observational correlation.  For the example shown in Figure D-7, n* is slightly
greater than 2 rather than 100 (i.e., n).
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EXHIBIT D-4

EFFECT OF SPATIAL AUTOCORRELATION
(r) ON EFFECTIVE SAMPLE SIZE (n*)

r n*

0.000 625

0.050 514

0.539   64

0.957     3

1.000     1

Spatial autocorrelation plays an analogous role in
georeferenced data.  If a sampling network is arranged as
a 25-by-25 square grid (one sample point per grid cell),
and superimposed over a large site so that a very large
distance separates nearby sample locations, then
essentially zero spatial autocorrelation should be present
in the geographic distribution of the concentrations of
any given chemical.  Concentrations will appear to be
haphazard across the site, rendering the effective sample
size as n*=625.  If the distance between nearby locations
on the sampling mesh is decreased so that the spatial
correlation is only r=0.050, then the effective sample size
decreases to n*=514.  The effect of reducing the inter-
sample distance on spatial autocorrelation and n* for a
25-by-25 grid is shown in Exhibit D-4.  If r increases to
1, then n* reduces to 1.  Therefore, obtaining a measure
of latent spatial autocorrelation is essential to estimating
n*; this in turn is critical to determining confidence limits
for estimates of mean concentrations, which are sensitive to sample size.  The UCL for the mean will be
biased only when very high levels of spatial autocorrelation are present; this is because the Student-t
statistic used to estimate the UCL (assuming a normal distribution) changes very little as the degrees of
freedom (related to sample size) increases above 10; part of the difference between n and n* is offset by
an inflation of the variance.

The concept of effective degrees of freedom is important in exposure assessment because high
positive spatial autocorrelation can bias the estimate of the UCL concentration if geospatial statistics are
not considered.  This should be of particular concern when specific locations at a site are intensively
sampled (e.g., suspected “hot spots”), and other locations are relatively undersampled.  Accordingly, the
design of the sampling network itself can be evaluated from the perspective of geospatial statistics in
order to ascertain the quality of sample information.  The ideal sampling network should provide
geographic representativeness, should be roughly uniformly distributed over a site, and is best
implemented as a stratified random sampling design; that is, the site is partitioned into geographic
stratum (e.g., EUs), and then a random sampling of points is selected within each strata.  In practice,
sample designs may need to focus on objectives that are in conflict with the above ideals.  For example,
intense sampling of suspected “hotspots” may be necessary at some sites, at the expense of a more
representative spatial coverage of the site.  In such cases, several statistical techniques are available for
assessing the statistical benefit (in terms of reducing uncertainty) of additional sampling at undersampled
locations.  

D.4.3 ASSESSMENT OF ADDITIONAL SITE SAMPLING

Thiessen Polygons.  In addition to calculating nearest neighbor statistics, the adequacy of a
sampling network can be assessed by Voronoi (i.e., Thiessen polygon) surface partitioning, a popular
approach used in mapping intra-site geographic distributions.  This procedure divides a site into a
mutually exclusive set of polygons, each polygon containing a single measured concentration.  Each
polygon has the unique property that any location within the polygon is closer to the polygon’s sample
location than to any other sample point (Clifford et al., 1995).  The concentration measured at the sample
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point in the polygon is assigned to the entire area of the polygon.  The intensity of sample points on a
surface can be measured by Equation D-3 mean inverse polygon areas:

where SI is a measure of the sampling intensity, Ai is the area of the ith polygon, and m is the number of
interior polygons (those not along the edge of the site); m < n.  The variance of the sampling intensity
can be expressed by Equation D-4:

If the sampling network is uniform (i.e., polygon areas are equal), the variance will be essentially zero. 
The variance will increase as the network deviates from uniform.  This measure can be used to assess
whether or not additional samples will improve the spatial coverage.  

! Sampling locations that would yield a dramatic reduction in the variance
should be given priority for future sampling efforts.

Thiessen polygons can be used to develop area-weighted estimates of the arithmetic mean
concentration (Csoil,w) according to the following general equation:

where Ci is the concentration in the ith polygon, Ai is the area of the ith polygon in the EU, and AT is the
total area of the EU.  The weight for each measurement is essentially the ratio of the area of each polygon
to the total area of the site.  Clifford et al. (1995) applied this approach to an ecological risk assessment
of the burrowing owl with the following simplifying assumptions: habitat range is circular, size of EU is
constant (75 ha) although location may vary, and organisms spend equal time in all portions of their
habitat.  Given these assumptions, a nonparametric bootstrap method can be used to determine the
approximate 95% UCL for the mean concentration (see Appendix C).  Using Monte Carlo analysis, Csoil,w
can be estimated for different locations of the EU according to Equation D-5, and confidence limits can
be generated from the multiple bootstrap estimates.  Burmaster and Thompson (1997) demonstrate a
similar approach in which the EU (with constant area but random rectangular dimensions) is overlayed
on the Theissen polygon surface and 95% UCL for the mean is calculated from the bootstrap sample.

Linear Regression.  Another diagnostic is found in the linear regression literature.  The
locational tag coordinates (e.g., longitude, latitude) can be converted to z-scores (say zu and zv) for the
following calculation:  
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where Y is a measure of the sampling network, ruv is the correlation between the coordinate axes, and n is
the number of samples.  Any sampling location (zu, zv) in which Y > 9/n may be considered too isolated
in the sampling network.  Additional sampling locations would be positioned closer to it to improve the
overall coverage of the sampling network.

D.4.4 MAP GENERALIZATION

Another important application of geospatial statistics to risk assessment is that of map
generalization, which draws on the subjects of geostatistics and spatial autoregression.  Techniques
developed for both topics exploit spatial autocorrelation in order to produce a map.  

Kriging and Semivariograms.  Geostatistics may employ kriging, which yields statistical
guesses at values of a chemical at unsampled locations based on information obtained from sampled
locations.  Kriging assumes that the underlying geographic distribution is continuous, evaluates spatial
autocorrelation in terms of distance separating sample points, and employs a scatter diagram similar to
the Moran scatter plot to portray this relationship (i.e., the semivariogram plot: half the squared
difference between measured concentrations for two sampled locations versus distance separating these
two locations).  The best-fit line to this scatter of points is described by one of about a dozen equations
(semivariogram models).

Many different kriging approaches can be applied to quantify the spatial relationships among
geographic attributes within an exposure unit.  For example, site-specific chemical concentrations may be
correlated with geologic information, such as glacial deposits, soil characteristics of core samples, and
attributes that represent favorable habitats for ecological receptors.  This information can be used to
expand the available data and improve estimates of chemical concentrations at unsampled locations by
employing a technique called co-kriging.

Thiessen Polygons and Spatial Autoregression.  Spatial autoregression assumes a discretized
surface, uses the Thiessen polygon surface partitioning to construct a Moran scatter plot, and can be used
to estimate values at selected points with a regression-type equation.  Theoretically, the exponential
semivariogram model relates to the conditional autoregressive model, and the Bessel function
semivariogram model relates to the simultaneous autoregressive model; in practice, though, the spherical
semivariogram model often provides the best description of a semivariogram plot.  Regardless of which
approach is taken to map generalization, one relevant contribution of these two subjects is the following
observation:

! Including positive spatial autocorrelation results in more accurate
variance estimates; this in turn yields more accurate estimates of the
95% UCL for the mean concentration.
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D.4.5 IMPLEMENTATION ISSUES RELATED TO GEOREFERENCED DATA

Estimation of parameters, for either geostatistical or spatial autoregressive models, cannot be
achieved with ordinary least squares (OLS) techniques; nonlinear least squares must be used.  While
OLS provides unbiased regression coefficients, these estimates are not necessarily sufficient (i.e., they do
not summarize all of the information in a sample pertaining to the population), efficient (i.e., the standard
errors often are incorrect), and consistent (i.e., the asymptotic sampling distribution concentration will
not be at the parameter value).  In other words, OLS essentially uses the wrong degrees of freedom in its
calculations, as described in Section D.4.2.  Two additional complications of georeferenced data that do
not appear in other types of data are (1) spatial autocorrelation might be directional (i.e., directional
dependency); and (2) variance might be nonconstant over space as well as over the magnitude of the
dependent variable, Y (e.g., chemical concentration).  Several statistical approaches, which are beyond
the scope of this guidance, are available for analyzing these potential sources of bias in the exposure
concentration estimates (Isaaks and Srivastava, 1989; Cressie, 1991; Griffith, 1993; Ginevan and
Splitstone, 1997). 

D.5.0 EXPERT JUDGMENT AND BAYESIAN ANALYSIS

Up to this point in RAGS Volume 3: Part A, risk has been characterized as having a population
probability distribution with parameters (e.g., mean, standard deviation) that can, theoretically, be
estimated from observation.  In theory, risk estimates could be derived by repeatedly measuring risk in
subsets of the population of interest (e.g., repeated measurements of site-related cancer risk).  The
unstated expectation, or goal, is that the PRA model will accurately simulate this real risk distribution. 
This approach derives from a classical view of probability.  The classical or frequentist view defines the
probability of an event as the frequency with which it occurs in a long sequence of similar trials.  From
the frequentist perspective, the probability of having a flipped coin land heads-up is given by the
frequency distribution of heads-up results derived from repeated similar trials of coin flips.  For real-
world decisions such as those informed by Superfund risk assessments, there is uncertainty that the
sample data are representative of the population (see Chapter 1, Section 1.2.4). 

Bayesian View of Probability.  A Bayesian perspective on probability allows distributions to be
constructed based on the judgment of an expert in the field.  The subjectivist or Bayesian view is that the
probability of an event occurring is the degree of belief a person has in the occurrence.  Probabilities can
be assessed by experts using scientific knowledge, judgment, data, past experience, and intuition. 
Different people may assign different probabilities to an event, and a single individual may assign
different probabilities to the same event when considered at different times.  The consequence is that
probabilities become conditional and the conditions must be explicitly stated (Howson and Urbach, 1989;
Morgan and Henrion, 1990; Ott, 1995; Sivia, 1996).  These conditional probabilities can, of course, be
updated with new information.  

Using the coin flip analogy above, a Bayesian perspective might be that, based on experience
with coins, assuming that most coins are fair, and that a fair coin would be expected to land heads-up half
the time, the expected probability of the tossed coin landing heads-up is 0.5.  If the outcome of repeated
trials was different from the expected, the Bayesian approach would be to update the probability based
on the new data.  In the coin flip example, both the Bayesian and frequentist approaches will arrive at the
same conclusions, because the outcome is amenable to rigorous experimentation.  Where the two
approaches can be expected to differ is in the assignment of probabilities to events that cannot be
rigorously measured; for example, the probability of a site-related cancer risk, or the probability of a
child ingesting a specific amount of soil. 
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EXHIBIT D-5

COMPONENTS OF BAYES THEOREM IN PRA

• Input probability distributions for exposure (or toxicity)
based on available data or expert judgment

• Prior probability distribution for risk based on input
probability distributions (output from PRA)

• New data
• Likelihood function, expressing the probability of

observing the new data conditional on prior risk
estimates

• Posterior (updated) probability distribution for risk

The subjective judgment of experts is, therefore, an important tool in the Bayesian approach to
risk assessment.  For example, the input distributions for a PRA may be based upon the judgment of one
or more experts who rely upon estimates from the literature, data from experimental studies, and any
other information they consider relevant.  Even when formal elicitations of expert opinion are not done,
the final selection of the form and parameters of the input distributions usually involves some subjective
judgment by the analyst.  One of the challenges of incorporating judgments from experts or lay people is
that there can be overconfidence bias (i.e., people tend to underestimate their uncertainty).  There is a
rich literature about the protocol for conducting expert elicitations and using the results to support
decisions (Lichtenstein and Fischoff, 1977; Morgan and Henrion, 1990; Shlyakhter and Kammen, 1992). 
Elicitation of expert judgment has been used to obtain distributions for use in risk assessments (Morgan
and Henrion, 1990; Hora, 1992; U.S. EPA, 1997;) and in developing air quality standards (U.S. EPA,
1982).  

In addition to providing input
distributions for PRAs, Bayesian analysis
allows the current state of knowledge,
expressed as a probability distribution, to
be formally combined with new data to
reach an updated information state.  The
distribution expressing the current
knowledge is the prior distribution and
may be the output of a PRA (Figure D-8). 
An appropriate likelihood function for the
data must also be formulated.  The
likelihood function is based upon an
understanding of the data gathering process
and is used to determine the probability of
observing a new set of data given that a
particular risk estimate is true.

Once the prior distribution is determined, the new data values are collected, and the likelihood
function is assumed, Bayes theorem (Exhibit D-5) provides a systematic procedure for updating the
probabilistic assessment of risk.  The updated information state is called the posterior distribution and
reflects the reduction in uncertainty arising from the new information.  
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Bayes Theorem $: P(Ri /D) !
P(D/Ri) P(Ri)

!
N

j!1
P(D/Rj) P(Rj)

Equation D-7

D = new data
Ri = ith risk prediction associated with new data
Rj = jth risk estimate simulated from PRA model 
N = number of risk estimates from the PRA model

Figure D-8.  Conceptual model of Bayesian Monte Carlo analysis.  A PRA simulation yields a prior distribution of risk
based on probability distributions for input variables.  Given new data for an input variable, and a likelihood function
for risk, Bayes Theorem (Eq. D-7) can be used to generate a posterior distribution of risk.  The expression P(D/R) refers
to a conditional probability, “the probability of D, given R”.  Conditional probabilities can be thought of as relative
frequencies, where R is the information given, and D is the event being computed when a particular value of R occurs.
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For example, suppose a model is available to relate soil tetrachlorodibenzodioxin (TCDD)
concentrations at a site with serum concentrations of TCDD.  A probability distribution of soil
concentrations is created based upon expert judgment and a limited amount of site specific data.  Using
the model, the soil concentrations can be associated with a distribution of serum TCDD concentrations
(P®), the prior distribution).  New site-specific data (D) are subsequently collected on serum TCDD
concentrations in order to reduce uncertainty in the risk estimate.  Assume that it is known that serum
TCDD concentrations generally follow a lognormal distribution and that the best estimate of the
parameters of this distribution come from the prior distribution on serum TCDD.  This creates the
likelihood function (P(D|R)).  Using Bayes Theorem, the new data are used to form a revised distribution
of serum TCDD.  This is the posterior distribution (P(R|D)). 

Bayesian Monte Carlo analysis.  In the past, the use of Bayesian analysis was limited by the
degree of mathematical complexity involved.  Using Monte Carlo analysis to carry out the PRA, rather
than mathematical equations to describe the distributions, allows the calculations to be done much more
easily.  This variation on traditional Bayesian methods is called Bayesian Monte Carlo analysis
(Patwardan and Small, 1992; Dakins et al., 1996).  In the TCDD example discussed above and illustrated
in Figure D-7, the required calculations are carried out for each of the N iterations of the Monte Carlo
analysis (I and j go from 1 to N).

Bayesian Monte Carlo analysis is appropriate in several situations.  If a model has been created
and a distribution developed using PRA, new information may be incorporated without the need to repeat
the entire analysis.  This information could be on one of the uncertain parameters of the model or on the
model output variable.  Similarly, a generalized risk model with generic parameter distributions may be
used for a Superfund risk assessment with the model predictions fine-tuned using data from a particular
site of interest.  Finally, after a distribution is developed, the amount of uncertainty that exists may be too
large for the risk manager to make a decision.  In this case, the risk manager might seek out new
information that would refine the analysis and decrease the uncertainty. 

Bayesian Monte Carlo analysis can also be combined with techniques from decision analysis to
help determine the type and quantity of data that should be collected to reduce uncertainty.  Decision
analysis is a technique used to help organize and structure the decision maker’s thought process and
identify a best strategy for action.  To determine the appropriate action, one defines the range of possible
decisions, evaluates the expected value of the utility or loss function associated with each decision, and
selects the decision that maximizes the expected utility or minimizes the expected loss.  

! Decision analysis provides a quantitative approach for evaluating the
benefits of including an expanded assessment of uncertainty and the
subsequent benefits of reducing this uncertainty.  

Value of Information.  Value of information (VOI) analysis involves estimating the value that
new information can have to a risk manager before that information is actually obtained (Clemen, 1996).
It’s a measure of the importance of uncertainty in terms of the expected improvement in a risk
management decision that might come from better information.  Examples of VOI quantities are the
expected value of including uncertainty (EVIU), the expected value of sample information (EVSI), the
expected value of perfect information (EVPI).  Calculation of these quantities can be done using
mathematical methods, numerical integration (Finkel and Evans, 1987), or Monte Carlo techniques
(Dakins, 1999)
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Value of information calculations require the specification of either a utility or a loss function.  A
loss function states the losses associated with making different types of decision errors including both
direct monetary costs and losses associated with other consequences.  Loss functions take various forms
depending on the risk management situation (Morgan and Henrion, 1990). 

Expected Value of Including Uncertainty.  The expected value of including uncertainty, EVIU,
is a measure of the value of carrying out a PRA.  It’s the difference between the expected loss of a
decision based on a point estimate risk assessment and the expected loss of the decision that considers
uncertainty (Figure D-9).  If uncertainty in a risk assessment has been estimated using Monte Carlo
techniques and a loss function has been specified, the EVIU can be easily calculated.  First, the
management decision from the point estimate assessment is determined.  The loss from making this
decision is calculated for each iteration of the Monte Carlo, each time assuming that the risk estimate
from that iteration is true.  The expected loss is the average of these individual losses.  The expected loss
for the PRA is determined by calculating the expected loss for a full range of management decisions and
selecting the decision with the lowest expected loss.  The EVIU is calculated by subtracting the loss
associated with the PRA from that associated with the point estimate risk assessment.  

Expected Value of Sample Information.  The expected value of sample information is the
difference between the expected loss of the decision based on the PRA and the expected loss of the
decision from an improved information state.  As such, the EVSI is a measure of the value that may result
from the collection and use of new information (Figure D-9).  Calculation of the EVSI involves a
technique called preposterior analysis and is somewhat more complicated.

This type of analysis is termed “preposterior” because it involves the possible posterior
distributions resulting from potential samples that have not yet been taken.  For each replication from the
Monte Carlo simulation, the predicted value from the model is used to randomly generate a set of K data
points.  Each set of data points is then used to calculate the posterior probabilities for the N Monte Carlo
simulated values.  These posterior probabilities are then used to obtain the optimal answer to the
management question at this new level of uncertainty by selecting the decision that minimizes the
expected loss over all possible management decisions.

This procedure is repeated for each of the N replications of the Monte Carlo analysis resulting in
N posterior distributions, N management decisions, and N associated expected losses.  Because each of
these outcomes is equally weighted, the expected loss associated with the state of uncertainty expected to
exist after the data collection program is carried out is simply the average of the N expected losses.  The
EVSI is the difference between the expected loss based on the results of the PRA and the expected loss
from the updated information state. 

Expected Value of Perfect Information.  The EVPI is the difference between the expected loss
of the decision based on the results of the PRA and the expected loss of the optimal management
decision if all uncertainty were eliminated.  In actual application, no research plan or data collection
program can completely eliminate uncertainty, only reduce it.  The EVPI is an upper bound for the
expected value of efforts to reduce uncertainty and so provides the ultimate bound on what should be
spent on research and data collection efforts. 
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Nominal Decision
Ignoring Uncertainty

Decision Under 
Uncertainty

Decision with Additional
 Imperfect Information

Decision with 
Perfect Information

EVIU

EVSI

EVPI

Expected Loss EVIU = Expected Value of Including Uncertainty
EVSI = Expected Value of Sample Information
EVPI = Expected Value of Perfect Information

Figure D-9.  Expected Loss associated with various types of information incorporated into a generic uncertainty
analysis.  The x-axis reflects different categories of value of information (VOI) quantities.  The y-axis reflects the
increasing Expected Loss with increasing uncertainty.

When a PRA has been carried out using Monte Carlo techniques, the expected loss associated with
perfect information is calculated by determining the expected loss for each iteration of the Monte Carlo,
assuming that the correct management decision, if that iteration were true, is made.  As always, the
expected loss is the average of these losses, and the EVPI is calculated by subtraction.

Uses of Value of Information in Risk Assessment.  VOI analysis has many benefits for risk
managers.  First, VOI analysis makes the losses associated with decision errors explicit, balances
competing probabilities and costs, and helps identify the decision alternative that minimizes the expected
loss.  VOI analysis can help a decision maker overcome a fear of uncertainty by developing a method to
handle it.  If the losses associated with making a poor decision are unclear, small uncertainties can take
on major importance.  Conversely, if the losses associated with different risk management decisions are
similar, little additional effort need be expended to continue to consider the alternatives. 
 

In addition, VOI analysis helps prioritize spending on research.  It provides insights into how
resources could be spent to achieve the most cost-effective reduction in uncertainty by identifying which
sources of uncertainty should be reduced, what type of data should be obtained, and how much data is
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needed.  Finally, VOI analysis may help decision makers explain the rationale for their decisions to the
public and help the public understand the multiple objectives considered in managing risks.

Expected Loss is usually greatest when uncertainty in risk estimates is ignored.  For example, by
quantifying uncertainty in risk (e.g., 2-D MCA, Bayesian Monte Carlo analysis) a risk manager may
determine that the cleanup level associated with the 90th percentile of the risk distribution (rather than the
95th percentile) is adequately protective.  Quantifying uncertainty may also result in lower expected loss
when more soil remediation is required due to the losses associated with possible under-remediation, e.g.,
cost of additional sampling or lost revenue due to failure to meet land use requirements.  The expected
loss may be further reduced by collecting additional soil samples, which would presumably reduce
uncertainty in estimates of mean exposure point concentrations.  The expected loss may be minimized by
obtaining "perfect" information (i.e., no uncertainty); however, as shown in Figure D-9, EVPI spans a
wide range of expected loss because the value associated with reducing uncertainty may be tempered by
costs associated with additional sampling and analysis.  In practice, risk assessors consider this issue
when deciding to obtain additional samples for site characterization.

The decision to obtain additional information in order to reduce uncertainty should be made on a
site-specific basis, taking into account the potential impact that reducing uncertainty may have on the
overall remedial decision.  Important questions to consider include: (1) Are the risk estimates sufficiently
sensitive to an exposure variable that collecting further data will reduce uncertainty? and (2) Are the
confidence limits on the 95th percentile risk estimate sufficiently wide that reducing uncertainty may alter
the cleanup goal?  An example of decision framework applicable to PRA is presented in Figure D-10. 
The framework has three tiers.  Tier 1 includes the point estimate approach and an assessment of the
need for PRA.  In Tier 2, the EVIU is calculated and, if warranted, a PRA is conducted.  In Tier 3, the
value of additional information is assessed and Bayes Theorem would be used to incorporate the new
information and update probability distributions.

Limitations of These Techniques.  Figure D-10 illustrates situations where Bayesian analysis and
value of information quantities may not be helpful.  For example, if point estimate risk assessment is
selected as the appropriate method, these techniques do not apply.  In addition, as site-specific data
become available that are increasingly comprehensive and representative of the population of interest,
Bayesian Monte Carlo analysis and the Monte Carlo analysis using the classical (frequentist) methods
will approach the same result.  This is because the site-specific data are incorporated into both
approaches.  To be representative and comprehensive, the data set must be sufficiently large, randomly
selected, and represent the full range of variability that exists in the population (e.g., temporal, spatial,
inter-individual).  However, data sets are rarely perfect, often too small, suffer from relatively high
sampling and/or measurement errors, or don’t represent the entire population variability over time, space,
age, gender, or other important variables.  If the data cannot be assumed to describe the population
distribution sufficiently well, then PRA will help to more fully develop the entire range of the population
distribution and the Bayesian Monte Carlo analysis will act to refine the model estimates.
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Figure D-10.  Conceptual model for evaluating the expected value of including uncertainty in a Bayesian
Monte Carlo analysis.
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In order to carry out VOI calculations, a loss function must be assumed.  Definition of the loss
function may be complex due to multiple decision goals and/or multiple decision makers and may be
difficult to capture in an equation.  Finally, for Bayesian analysis and the calculation of the EVSI to be
helpful, one or more sources of new data must exist.  In addition, some information must be available
about these data since a likelihood function describing its probability distribution must be assumed.  
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